Thermoelectric materials

![SnSe Performance Metrics[51]](/Images/godic/202502/16/Selenide_(SnSe)_Performance_Metrics5414.png")
Thermoelectric materials show the thermoelectric effect in a strong or convenient form.
The thermoelectric effect refers to phenomena by which either a temperature difference creates an electric potential or an electric potential creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (converting temperature to current), Peltier effect (converting current to temperature), and Thomson effect (conductor heating/cooling). While all materials have a nonzero thermoelectric effect, in most materials it is too small to be useful. However, low-cost materials that have a sufficiently strong thermoelectric effect (and other required properties) could be used in applications including power generation and refrigeration. A commonly used thermoelectric material in such applications is bismuth telluride (Bi
2Te
3).