笛卡儿符号法则 Descartes' rule of signs
(重定向自Rule of signs)
笛卡儿符号法则,首先由笛卡儿在他的作品La Géométrie中描述,是一个用于确定多项式的正根或负根的个数的方法。
如果把一元实系数多项式按降幂方式排列,则多项式的正根的个数等于相邻的非零系数的符号的变化次数,或者比它依次小2的整倍数;而负根的个数则是把所有奇数次项的系数变号以后,所得到的多项式的符号的变化次数,或者比它小2的整倍数。
例如,以下的多项式
在第二项和第三项有一个符号变化。因此它正好有一个正根。实际上,我们可以看到,这个多项式可以分解为:
因此它的根为−1(二重根)和1。
把奇数次项变号,可得: