多重共线性 Multicollinearity
多重共线性是指多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。比如虚拟变量陷阱(英语:Dummy variable trap)即有可能触发多重共线性问题。
单词 | Multicollinear |
释义 |
Multicollinear
中文百科
多重共线性 Multicollinearity(重定向自Multicollinear)
多重共线性是指多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。比如虚拟变量陷阱(英语:Dummy variable trap)即有可能触发多重共线性问题。
英语百科
Multicollinearity 多重共线性(重定向自Multicollinear)
In statistics, multicollinearity (also collinearity) is a phenomenon in which two or more predictor variables in a multiple regression model are highly correlated, meaning that one can be linearly predicted from the others with a substantial degree of accuracy. In this situation the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample data set; it only affects calculations regarding individual predictors. That is, a multiple regression model with correlated predictors can indicate how well the entire bundle of predictors predicts the outcome variable, but it may not give valid results about any individual predictor, or about which predictors are redundant with respect to others. |
随便看 |
英汉双解词典包含3607232条英汉词条,基本涵盖了全部常用单词的翻译及用法,是英语学习的有利工具。