请输入您要查询的英文单词:

 

单词 Hahn Banach Theorem
释义

Hahn Banach Theorem

中文百科

哈恩-巴拿赫定理 Hahn–Banach theorem

(重定向自Hahn Banach Theorem)

在泛函分析中,哈恩-巴拿赫定理是一个极为重要的工具。它允许了定义在某个矢量空间上的有界线性算子扩张到整个空间,并说明了存在“足够”的连续线性泛函,定义在每一个赋范矢量空间,使对偶空间的研究变得有趣味。这个定理以汉斯·哈恩和斯特凡·巴拿赫命名,他们在1920年独立证明了这个定理。

英语百科

Hahn–Banach theorem 哈恩-巴拿赫定理

(重定向自Hahn Banach Theorem)

In mathematics, the Hahn–Banach Theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of Hahn–Banach theorem is known as Hahn–Banach separation theorem or the separating hyperplane theorem, and has numerous uses in convex geometry. It is named for Hans Hahn and Stefan Banach who proved this theorem independently in the late 1920s, although a special case—for the space C \left[a, b \right] of continuous functions on an interval—was proved earlier (in 1912) by Eduard Helly, and a general extension theorem from which the Hahn–Banach theorem can be derived was proved in 1923 by Marcel Riesz.

随便看

 

英汉双解词典包含3607232条英汉词条,基本涵盖了全部常用单词的翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2022 Newdu.com All Rights Reserved
京ICP备09058993号 更新时间:2025/5/15 15:16:31