释义 |
- 1
计算机科学技术 自我训练 Based on Self-Training , Co-Training and Low Density Separation, first builds initial classifiers using labeled samples, then improve themselves using unlabeled samples recursively. 分别应用自我训练和协同训练,低密度分割,首先利用少量已标注样本进行训练学习,建立初始分类器,然后利用大量未标注样本不断新分类器,从而提高分类器的性能。 自训练 自我学习 A lot of experiments have been done using the same remote sensing images based on different kind of methods including supervision and semi-supervision, self-training and co-training, and Low Density Separation in this paper. 本文用不同的方法对同一批次的遥感影像数据进行了大量实验:运用基于朴素贝叶斯的全监督学习方法,与基于自我学习与协同学习的半监督学习方法进行比较,引入低密度分割进行影像的分类实验。 单类中心学习
- 1
You should love to challenge yourself and be willing to extend your knowledge to stay up-to-date not only by trainings but also by self-study. 你应该愿意接受挑战,并愿意不断更新自己的知识,不仅要能通过培训来提升水平,也要能够自学相关领域的新知识。 - 2
Students and citizens learn how to self-rescue and survive and improve the essential disaster prevention knowledge through some disaster prevention trainings. 通过一些防灾减灾演习,训练学生及居民学会逃生、自救,以及提高必要的灾害防范知识。
|