释义 |
- 1
数学 截面曲率 For hypersurfaces, we prove the non-existence theorems under the assumptions about the principal curvature, sectional curvature or the square length of the second fundamental form respectively. 关于超曲面,我们在假设这些类子流形的主曲率,截面曲率或者第二基本形式模长平方分别满足某种条件下,证明了相应的非存在性定理。 截曲率 We get the expressions of holomorphic sectional curvature under above Einstein-Kahler metric and prove this curvature has upper bound and lower bound . 2.给出了在该度量下的全纯截曲率的上下界。 截(面)曲率
- 1
It proves that the estimate sectional curvature of a quaternion manifold is very useful for Riemann symmetric space. 它进一步说明一个四元流形的截面曲率的估计对许多对称黎曼空间都是有效的。 - 2
We used the relationship of the Riemann symmetric space and the symmetric algebra, a matrix inequality to provided a estimate sectional curvature of a complex manifold. 利用黎曼对称空间同正交对称李代数之间的密切关系及一个矩阵不等式给出了一个复流形上截面曲率的上界的精确估计。 - 3
Einstein manifold is a particular kind of Riemannian manifold, it has good characters, its definition is weaker than Riemannian manifold with constant sectional curvature. 爱因斯坦流形是特殊的一种黎曼流形,它有很好的特征,其定义弱于常曲率黎曼流形。
|