Based on theory of hyperbolic linear partial differential operator, the initial value problem of a kind of quasi-linear hyperbolic equations with non-zero initial values was introduced and studied.
基于双曲型线性偏微分算子理论,引入并研究了具有非零初始值的拟线性双曲型方程的定解问题。
2
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
3
Using the resolvent operator technique, we obtain the approximate solution to a system of set-valued quasi-variational inclusions.